On growth conditions for quasiconvex integrands
نویسندگان
چکیده
منابع مشابه
Optimality Conditions for Quasiconvex Programs
We present necessary and sufficient optimality conditions for a problem with a convex set constraint and a quasiconvex objective function. We apply the obtained results to a mathematical programming problem involving quasiconvex functions.
متن کاملMathematik in den Naturwissenschaften Leipzig Quasiconvex relaxation of multidimensional control problems with integrands f ( t
We prove a general relaxation theorem for multidimensional control problems of Dieudonné-Rashevsky type with nonconvex integrands f(t, ξ, v) in presence of a convex control restriction. The relaxed problem, wherein the integrand f has been replaced by its lower semicontinuous quasiconvex envelope with respect to the gradient variable, possesses the same finite minimal value as the original prob...
متن کاملHermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کاملRadial quadrature for multiexponential integrands
We introduce a Gaussian quadrature, based on the polynomials that are orthogonal with respect to the weight function ln(2)x on the interval [0, 1], which is suitable for the evaluation of radial integrals. The quadrature is exact if the non-Jacobian part of the integrand is a linear combination of a geometric sequence of exponential functions. We find that the new scheme is a useful alternative...
متن کاملGaussian quadratures for oscillatory integrands
We consider a Gaussian type quadrature rule for some classes of integrands involving highly oscillatory functions of the form f (x) = f 1 (x) sin ζ x + f 2 (x) cos ζ x, where f 1 (x) and f 2 (x) are smooth, ζ ∈ R. We find weights σ ν and nodes x ν , ν = 1, 2,. .. , n, in a quadrature formula of the form 1 −1 f (x) dx ≈ n ν=1 σ ν f (x ν) such that it is exact for all polynomials f 1 (x) and f 2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Quarterly Journal of Mathematics
سال: 2017
ISSN: 0033-5606,1464-3847
DOI: 10.1093/qmath/hax054